The Performances of MODIS-GPP and -ET Products in China and Their Sensitivity to Input Data (FPAR/LAI)
نویسندگان
چکیده
The aims are to validate and assess the performances of MODIS gross primary production (MODIS-GPP) and evapotranspiration (MODIS-ET) products in China’s different land cover types and their sensitivity to remote sensing input data. In this study, MODIS-GPP and -ET are evaluated using flux derived/measured data from eight sites of ChinaFLUX. Results show that MODIS-GPP generally underestimates GPP (R2 is 0.58, bias is −6.7 gC/m2/8-day and RMSE is 19.4 gC/m2/8-day) at all sites and MODIS-ET overestimates ET (R2 is 0.36, bias is 6 mm/8-day and RMSE is 11 mm/8-day) when comparing with derived GPP and measured ET, respectively. For evergreen forests, MODIS-GPP gives a poor performance with R2 varying from 0.03 to 0.44; in contrast, MODIS-ET provides more reliable results. In croplands, MODIS-GPP can explain 80% of GPP variance, but it overestimates flux derived GPP in non-growing season and underestimates flux derived GPP in growing season; similar overestimations also presented in MODIS-ET. For grasslands and mixed forests, MODIS-GPP and -ET perform good estimating accuracy. By designing four experimental groups and taking GPP simulation as an example, we suggest that the maximum light use efficiency of croplands should be optimized, and the differences of meteorological data have little impact on GPP estimation, whereas remote sensing leaf area index/fraction of photo-synthetically active radiation (LAI/FPAR) can greatly affect GPP/ET estimations for all land cover types. Thus, accurate remote sensing parameters are important for achieving reliable estimations. OPEN ACCESS Remote Sens. 2015, 7 136
منابع مشابه
Evaluation of MODIS Gross Primary Production across Multiple Biomes in China Using Eddy Covariance Flux Data
MOD17A2 provides near real-time estimates of gross primary production (GPP) globally. In this study, MOD17A2 GPP was evaluated using eddy covariance (EC) flux measurements at eight sites in five various biome types across China. The sensitivity of MOD17A2 to meteorological data and leaf area index/fractional photosynthetically active radiation (LAI/FPAR) products were examined by introducing si...
متن کاملEstimation of Global Vegetation Productivity from Global LAnd Surface Satellite Data
Accurately estimating vegetation productivity is important in research on terrestrial ecosystems, carbon cycles and climate change. Eight-day gross primary production (GPP) and annual net primary production (NPP) are contained in MODerate Resolution Imaging Spectroradiometer (MODIS) products (MOD17), which are considered the first operational datasets for monitoring global vegetation productivi...
متن کاملEvaluation of the Latest MODIS GPP Products across Multiple Biomes Using Global Eddy Covariance Flux Data
The latest MODIS GPP (gross primary productivity) product, MOD17A2H, has great advantages over the previous version, MOD17A2, because the resolution increased from 1000 m to 500 m. In this study, MOD17A2H GPP was assessed using the latest eddy covariance (EC) flux data (FLUXNET2015 Dataset) at eighteen sites in six ecosystems across the globe. The sensitivity of MOD17A2H GPP to the meteorology ...
متن کاملEvaluation of Water Use Efficiency Derived from MODIS Products against Eddy Variance Measurements in China
Water use efficiency (WUE) is a useful indicator to illustrate the interaction of carbon and water cycles in terrestrial ecosystems. MODIS gross primary production (GPP) and evapotranspiration (ET) products have been used to analyze the spatial and temporal patterns of WUE and their relationships with environmental factors at regional and global scales. Although MODIS GPP and ET products have b...
متن کاملExploring Simple Algorithms for Estimating Gross Primary Production in Forested Areas from Satellite Data
Algorithms that use remotely-sensed vegetation indices to estimate gross primary production (GPP), a key component of the global carbon cycle, have gained a lot of popularity in the past decade. Yet despite the amount of research on the topic, the most appropriate approach is still under debate. As an attempt to address this question, we compared the performance of different vegetation indices ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015